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is rather close to the ratio of the transfer into 3d
orbitals, namely, B2(A)/B%(B)~2.6. This is what
one would expect qualitatively considering only the
Fe-O distances.
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In a subsequent publication we will discuss the
difference in the A~ and B-site hyperfine fields in
ferrites and garnets as well as Fe® hyperfine fields
measured in other compounds.
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Parquet diagrams are used to self-consistently include vertex corrections to the paramag-

non propagator in the Suhl model of local-moment formation.
merically in an approximation valid at high temperatures.

The equations are solved nu-
Curie~-law behavior for the self-

consistent susceptibility is not found; instead the susceptibility varies roughly as T-%/3, A
conserving approximation to the susceptibility based on the parquet-diagram approximation
for the mass operator is also investigated. This gives a susceptibility which diverges at

finite T'.
cussed.

I. INTRODUCTION

Suhl! has developed a model of local-moment
formation based on the Anderson? or Wolff® models
in which the strong intra-atomic Coulomb repulsion
between localized d electrons of opposite spin,
broadened by conduction-electron scattering, forms
long-lived spin fluctuations in the localized state.
The lifetime of the spin fluctuations, or localized
paramagnons, is much longer than that of the d

Possible consequences of abandoning the high-temperature approximation are dis-

electrons themselves. At high temperatures this
leads to a Curie-law susceptibility for the localized
state, and at lower temperatures In7 behavior of
the resistivity, reminiscent of the Kondo effect,"%3
is found, though the Kondo temperature and the
Curie constant predicted by this model are much
smaller than is expected.® The model requires a
self-consistent calculation of the d-electron prop-
agator, renormalized by paramagnon exchange,

and the paramagnon propagator, which is essential-
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ly the electron vertex function. In previous calca-
lations the vertex function has been obtained from
a Bethe-Salpeter equation in which the interaction
is given by the bare potential U.® Béal-Monod and
Mills” have shown that the inclusion of paramagnon
exchange in the kernel of the Bethe-Salpeter equa-
tion has a significant effect on the paramagnon
propagator and that this effect is at least as impor-
tant as the self-energy corrections at low tempera-
tures. This paper treats the problem of self-con-
sistently calculating the paramagnon-exchange cor-
rections by means of the parquet diagrams.®

In a preliminary version of this work® an approxi-
mate and relatively simple solution of the equations
was found which led to a Curie-law susceptibility,
i.e., yx T-'. Two approximations were used:

(i) The self-consistent paramagnon propagator was
taken to have an infinite lifetime (this restricts the
approximation of high temperatures); (ii) terms in
the kernel of the effective Bethe-Salpeter equation
for the paramagnon which introduced an extra fre-
quency dependence were dropped. We shall relax
the second approximation in this paper. The re-
sulting equations are solved numerically. A dras-
tic change in the behavior of the susceptibility as
a function of temperature is found: x<« 7'-2/3 is
the most singular low-temperature behavior of

the solution.

We also investigate a conserving approximation
to the susceptibility!® based on this approximation
to the mass operator in the hope that such an ap-
proximation, which gives the actual response to the
external field for the approximate electron prop-
agator we calculate, will give a more physical re-
sult for the susceptibility. We find that the con-
serving susceptibility is too singular—it diverges
at finite temperatures, implying that either the
parquet-diagram approximation has not succeeded
in including all diagrams which lead to the Curie-
law susceptibility in local-moment systems, or
that the infinite-lifetime approximation has failed.

The parquet diagrams and equations are given in
Sec. II, as well as the numerical results. The
conserving approximation is derived and calculated
in Sec. II. Section IV contains a discussion of the
results and speculations as to what would occur if
we were to relax the high-temperature approxima-
tion of zero-width paramagnons.

II. PARQUET DIAGRAMS

The paramagnon mode in this model appears as
the nearly singular behavior, at low-frequency
transfer, of the solution of a Bethe-Salpeter equa-
tion for the electron vertex function. Even though
the solution is nearly singular, each term in the
expansion of the vertex function is finite and well
behaved. The problem of self-consistently calcu-

- lating paramagnon-exchange effects in the effective
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interaction of this Bethe-Salpeter equation must
then involve some way of coupling such nearly sin-
gular solutions of Bethe-Salpeter equations. The
parquet diagrams® provide a formal method of ex-
pressing all diagrams for the vertex function in
terms of the solutions of a set of coupled Bethe-
Salpeter equations.!' As the effective interaction
for each of these Bethe-Salpeter equations is given
in part by the solutions of the other equations in
the set, the parquet diagrams thus generate one
way of introducing the paramagnon-exchange effects
self-consistently.

We classify a diagram as reducible if it can be

Joroken into two disjoint parts by cutting two elec-

tron lines or an electron line and a hole line. Dia-
grams which cannot be so broken apart are totally
irreducible. For particles interacting through a
two-body potential there are three classes of re-
ducible diagrams and no diagram is reducible in
more than one channel. There are those diagrams
reducible in the direct electron-hole channel, which
we take to be those diagrams in which the electron
and hole propagators are horizontal, as in Fig.
1(a), those reducible in the crossed electron-hole
channel [Fig. 1(b)], and those reducible in the elec-
tron-electron channel [Fig. 1(c)]. All diagrams
reducible in a particular channel may be summed
by means of a Bethe-Salpeter equation, as shown

in Fig. 1, in which the interaction part of the kernel
is given by all diagrams irreducible in that chan-
nel, i.e., the totally irreducible diagrams plus

all diagrams reducible in the other channels. If

we let I be the totally irreducible part of the vertex
function, y“the sum of all diagrams reducible in
the direct channel, ¥° the sum of all diagrams
reducible in the crossed channel, and ¥ the sum
of all diagrams reducible in the electron-electron
channel, the corresponding Bethe-Salpeter equa-
tions, in the antisymmetrized many-body formal-
ism, % are

y4 =120 I%gI® + 87 1 I'ggy? (1a)
,yc= _ ﬁ-l E Icgglc _B-l Z} Icggyc , (lb)
,yee:%B-l E Ieegg ee+%B-1 Z} Ieeggyee , (1c)

a
I'=I+y°+y%,
I°=I+y% 9%,
I®=T+y%+y°,

where g stands for the electron propagator, and
we have suppressed the spin and frequency argu-
ments in the sums. The diagrams for y° may be
obtained from those for y¢ by using the antisym-
metry of the vertex function under the exchange of
its electron (or hole) variables, which gives the
crossing relations

c ’, — d o !
Yoy, 00 03.04(€: €sw)=- 701,02;04,03(5, c+wye —¢€)
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@‘0 ]
e+w U;xe w0y  €+W,03 +w,0’ runc
(a)
€,0, €\,0,
FIG. 1. The parquet diagrams. 7¢
sums all diagrams reducible in the direct
, electron-hole channel, y¢ sums those re-
€,0 E+re'-¢€,0 ducible in the crossed electron-hole chan-
nel, and Y sums those reducible in the
€+W,03 €+w,0p electron-electron channel. The irreduc- -
ible vertices I%, I°, and I° are the sums
&t w, o of all diagrams not reducible in their
€+Ww,03 e respective channels. The full vertex is
(b) T=I+y% +y¢+vy°, where I is the totally
irreducible vertex.
c+€'+w 0’
oo )/\: v, >
€,0
€+Ww,0y €'+w,0,
= - yo"z,cl;as,”(e’ +w, e, e~-€). (2) is represented by a Kronecker §, y%x§y, oand

Both y°® and I are coupled to themselves by these
crossing relations.

If we drop ° and y°® from I%, and y? and y*
from I°, and set I equal to the bare vertex, Egs.
(1) reduced to the vertex equation considered by
Suhl! and the other work on this model, #° which
gives a vertex function which is nearly singular in
the frequency transfer, which is w for y¢ and
€' - ¢ for y°. Therefore, we expect similar be-
havior for the parquet-diagram vertex functions.
Unlike the Suhl vertex equation, the parquet equa-
tions cannot be solved in closed form. To self-
consistently calculate the effects of paramagnon
exchange, we must assume the existence of a para-
magnonlike solution, i.e., a narrow resonance at
w= 0 in ¥? and, from the crossing relations, at
e=¢' in y°, ¥ insert it into the effective interactions
I, I° and I°, and obtain the same mode in the
solution of the equations.

If we assume this mode to have a nonzero width
the equations are still too complicated for reason-
able numerical calculations. We therefore assume
that for a first approximation we may take the mode
to have zero width. Since we use the imaginary
frequencies iw,=2min/B, the infinitely narrow mode

y®x 8, ¢. This approximation is reasonably valid
at high temperatures where the imaginary fre-
quencies are widely spaced 14

However, using y°x§, o in I yields a term in

v proportional to 8, ¢ itself, so that simplest ap-
prox1mat10n for ¢ whxch will be a self- con51stent
solution for zero-width paramagnon mode in ¢ and
v¢is

d 7, 1 ’
7u1.02:03,04(€’ €'5w)= Gy 051050406 €5,

+G2

01,09303, 04(5, €+ w)ﬁ € € 9

(3)

where we assume G' and G are slowly varying func-
tions of their arguments. We shall also make the
further approximation of replacing the totally ir-
reducible vertex I by the bare vertex,

I =U(5 Bo, .) -

01,09 03,04 01104705, 0g

9

03,93005,0, = 0

Since y° is related to y¢ by the crossing relations,
I is given in terms of U, G!, and G% and Eq. (lc)
gives I’ in terms of U, G, G? and the electron
propagator g. Hence, Eq. (1a) becomes a self-
consistent equation for G! and G2.

The analysis is simplified by the use of the spin
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projection operators appropriate for each channel:

s _1
Aayya5503,04= 2 oy, 05005,04 5 (4a)
Al =85, 6,090, 0. =% Og. 5.0 (4p)

01,093 03104~ ©01,04°0p,03 ~ 2 U0y,03705,04

for the direct channel and

A:v 033 03:04 " : (601, 000,05 % 601,036,2,04) )
for the electron-electron channel. Decomposing
G, G% and y® according to

G«iwl,az;os, 04(6: €)= G;(e; 5’)/\:1,02; 03,04
+G‘t(€: €')A51,oa;os,a4 ’ (6)
7:?,02;03,04(5’ €;w)=7.¢ €; w)A;1,02;03,04
+7.(6 €5 0IAG 000, 0 (7)
we have

vile, €'3w)=R, (e, €’; w) +p" g(e)g(s’%w)

X G, €' +w)A(e, €' +w)[ 8¢ e FOu 0],  (8)

A,le, €)=[1=8"2(e)g(e")C.e, )], ©)
where

G,=-3(Gl+G:-G%-G2), (10a)

G.=3 (3G} -G +3G:-G?) (10b)

(we have dropped the frequency arguments of the
G’s and G'’s) and

R.(e, E’: w)=0,

R(e, e;w)=2U{1-A (e, € +w)A.(/, e +w)

(11a)

X[1+S.(e+e'+w)]}, (11p)

S (w)=

™|

2 g@g(w-9A.E w=-3) .

By using the free propagators g, and setting A_=1,
we have S%(0)>0. We do not expect the sign of S.
to change when we use the self-consistent g’s and
the correct expression for A, so that the R, terms
in Eq. (8) do not contribute to the singular behavior
of % and have been dropped in the subsequent
analysis.

Defining the auxiliary quantities

& (€, €)=p"g()e(" )G, €NAle, ), (12)

Ql=-1(3Q,+Q.+G2+3G?), (13a)
Q=3(Q.-Q,+Gi-G2), (13b)
@=%(39,- Q.- G1-3G!), (13¢)
Q=%(Q.+Q.+G; - Gy) (13d)

(again dropping the frequency arguments), we find,
using Egs. (2) and (8), that G! and G? satisfy

R. A. WEINER 4

Glle, €)=v(e,€') - U= QMe, €') (14a)
Gile, €')=vle, €)+ U~ Qe €'), (14b)

Gie, ') =B (e)g(e [ Q2e, €
x[1-pg(e)g(eN@Rle, ), (152)

Gi(e, €')=B"g(e)g(e")[Q¥(e, )}
x[1-pg(e)g(e)Qie, €], (15b)

where the y’s must satisfy
Ys(e, €)=[U+ Qle, €")]A (€A (e’) +A ()8

X207 [U+Qi(e, D]g*E@,(c, €,  (16a)

vele, €)=[ - U+ Q}e, €)]A,()A, (") +A, ()
X 27 [~ U+ Qile, 9]g* @& '), (16b)
A =[1-p"2%e)Qie, T, (172)
Ae)=[1-8"%2%e)Qie, ] . (17b)

If we drop the @'’s and the A’s, Eqs. (16a) and
(16b) reduce to the singlet and triplet vertex func-
tions, respectively, without paramagnon ex-
change.'* Therefore, it is more convenient to
take ¥,=vs— Uand ¥; =y, + U as the basic quantities
of the theory, solve for Q1 and ¢® in terms of the
7’sand so convert Eqs. (16) into coupled nonlinear
equations for the y’s. From Egs. (10), (13), and
(14) we have

Ys+7:=-2(G.+Q,), (18a)
37 -7%:=2(Q.-G.), (18b)
V=7 ==2(Q¢+G%), (18c)
3 -V,=-2(¢+G%) . (18d)

Using Eqs. (12) and (15), and letting gg’ stand for
gle)gle’), Eqs. (18) yield

Q.=B"22"[3 G +7) 1 =28’ 7+ 7],

(192)
Q.=B"gg'[3 (37, - 7)1 +3 872’ (37, - 7],
(19b)
Gi=p"22'[2 7 =¥ )P[1+2 878 B - 7)™,
(19¢c)
Gi=p"gg'[3 (37, +7)P[1 - 3 8728’ (37, +7,)] .
(19d)

Equations (18) and (19), combined with Eqs. (17),
also give

(20a)
(20b)

A()=1-38"g%37,+%,),
Ale)=1+% B-lgz(')_’t kAR

Having determined the @,’s and the G*’s in terms
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of the 7’s and hence the »’s, we can find the Q'’s
in terms of the y’s from Eqs. (13). Along with the
A’s as given by Egs. (20), this determines the
effective interactions in the Bethe-Salpeter equa-
tions, Eqs. (16), for the strength of the zero-
width paramagnon mode (the y’s) in terms of the
v’s themselves, i.e., we have obtained a self-con-
sistent coupling of paramagnon exchange in the ef-
fective interaction with the equations for the para-
magnon’s existence.

The final step in the calculation is to express the
mass operator in terms of the ¥’s and the prop-
agator g. Using the spin decomposition in the di-
rect channel, the full vertex I'=I+y%+y°+y® is

Ty(e, €';w) ~58,,07s(€, € ) +6¢ & Qle, € +w)
X [1-B"1g(e)gle + w)@(e, e +w)]?,
(21a)
Ty(e, €50) ~8,,07:(€, €)+5, 0 Qle, e +w)
X [1 =B lg(e)gle + w)QE(e, € + w)]™,
(21p)

where we have kept only those terms which have
Kronecker-§ singularities in the frequency trans-
fers. From Eqs. (18), (19), and (13) we can find
the @*’s in terms of the 7’s, so that

T(e, €'50)=v4(e, €)8,,0
-3[37:(e, € +w) +75(e, e +w)]o o , (22a)

Ty(e, €'50) =€, €)0,,0

+3 [ 7le, e +w) = Ve(e, €+ w)[6e, e . (22D)

We calculate the mass operator (minus the Hartree-
Fock term) for the diagram of Fig. 2, obtaining

2e)=- 3800 7 Dg@lnle, D+7,(6, ©

- 37t(€, E) - 37’1»((, E)] bl (23)

which completes our coupled equations for the ver-
tex functions and the propagator.

To find out what the effects of paramagnon ex-
change are we now investigate the changes in the
effective interaction due to the @'’s and the A’s.
The case where @!’s are dropped and only the A’s
kept has already been studied® The parquet equa-
tions then lead to slight but significant changes
from Suhl’s original results.’ Keeping the @'’s,
however, leads to drastic changes. The expres-

jomuoy

FIG. 2. The mass operator. U
is the bare two-body interaction.
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sions for @ and @} can be simplified by noting that
for both the Suhl vertex' and the preliminary inves-
tigation of the parquet diagrams® y,< U while |y, |

> U. Only when |y|> U is the assumption that the
vertex function can be approximated by a Kronecker
5 valid, so that keeping only ¥, ~v,, we have

QL= -38"gg" vZ[1 -3 (87%gg"7,)?]

X [1-3 (8" v, P11 - (87", )?], (24a)
Q=-1("gg) i1 -5 B gg" )]

X [1-% (Bgg v T 1 - § (B gg )™ .

(24p)
From the Dyson equation

g M) =g e)-2(e),

we can show for the case ¢,=—3 Uthat g, with the
Hartree-Fock term included in the mass operator, *
is a pure imaginary and odd function of the imag-
inary fermion frequencies ie,= (2n+1)ri/8. It

then follows that v,(e,, €, ) is negative and that
Qi(e,, € ) is positive for all values of €, and €, .
That is, the part of the effective interaction which
is due to paramagnon exchange reduces the effec-
tive interaction below that of the bare potential U
and hence makes the paramagnon mode less likely
to occur. One may estimate how strong the mod-
ification is by noting that the condition determining
the low-temperature behavior is now Q! finite,
whereas in earlier work'? the condition was =
finite, which leads to v, /B ~y, T finite as T~ 0.
Assuming that the low-temperature propagators are
virtually temperature independent, as is true in

the earlier work, '° Eq. (24b) implies

5

v§/B%~const ,

as T~0, or y;« p#3c 7723 in the full zero-width
parquet approximation. Since the susceptibility
is given by

v=- s (3 2 2O mile, €)

+gp DT -l e)}) , (@)

this leads to x < T°¥?% in contrast to the Curie-law
susceptibility x < 7! found before.

The effect of paramagnon exchange on the scalar
vertex is more difficult to ascertain, since Q!, as
given by Eq. (24a), does not have a definite sign.
1t is positive when ¢ and €’ are on the same side
of the real axis and negative when they are on op-
posite sides. (A positive Q§ increases the effective
repulsion in the scalar vertex equation.) To verify
our assumption that y,< U, the numerical calcula-
tions solved the linear equation for y,, Eq. (16a),
as well as the nonlinear triplet equation with Q!
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FIG. 3. | 74(€p,€p) | /Viws€n=(2n+1)

x m/B, as a function of n for U=3 U,
=9.42 and $=100. The maximum value
of » in the calculation is 15000, and

the asymptotic value of the vertex v;.

is 450. The condition | y,(€,, €,) | »U
is always satisfied. (All energies are
measured in units of A, the width of

the unrenormalized d-state propagator.)
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and @} given by Eqs. (24). This was solved self-
consistently with Dyson’s equation for the propa-
gator, the mass operator being given by Eq. (23),
with ¥, set equal to y; and y, set equal to zero. The
frequencies € and €’ were picked on an exponential-
ly spaced mesh, and sums were performed by
linear interpolation between mesh points. The solu-
tion procedure is to guess an input g(e) and v,(e, €’).
The right-hand side of Eq. (16b) is then calculated,
giving an output v,(e, ¢’), and a new input vy, is
guessed. This process is repeated for a fixed g(e)
until convergence is obtained; then the mass oper-
ator is calculated, a new input g obtained, and the
process repeated until a solution is found for both
gand y,. The frequency mesh is then refined and
the procedure repeated until convergence is ob-

100 T

T T T L T T T

X/(gl-l-a)z

I I TR

Lol L 1

| 10 100
B

FIG. 4. The self-consistent susceptibility x as a
function of B for various values of U.

1000

1250

tained as a function of the fineness of the frequency
mesh. At the lowest temperatures and highest
values of U, we obtain 5% convergence; at higher
temperatures and for smaller values of U, the con-
vergence is better, usually within 2%. After a
converged solution is found for y,, the scalar ver-
tex is obtained by matrix inversion. The condition
vs< U is always satisfied. The susceptibility is
then calculated from Eq. (25).

A typical plot of y,(e, €)/7:., Where v, is the
asymptotic value of y,(e, €) as €~ , is shown in
Fig. 3. The frequency dependence is quite striking
and arises from the fact that Q% is largest at the
smallest frequencies where the propagator is larg-
est. In general, the condition |y,.| > U is satisfied
quite well, but the corresponding condition for low
frequencies is not so well satisfied, especially for
large U.

The solution for the susceptibility as a function
of 8= (£T)"! is plotted in Fig. 4. For U= U,=nA/A%
where A and A are the width and strength, respec-
tively, of the d-state resonance in the unrenor-
malized propagator, ! y behaves as g* at low tem-
peratures, with @=0.44 for U= U, and increasing
from 0. 69 to 0.76 as U increases from 1.5U, to
10U,. This temperature dependence for the self-
consistent susceptibility is unsatisfactory for a
theory of local-moment formation. In Sec. IIwe
will consider a different way of calculating the sus~
ceptibility in the framework of the parquet-diagram
approximation and see that it too leads to unsatis-
factory temperature dependence for y, but of a com-
pletely different nature.

III. CONSERVING APPROXIMATIONS TO THE
SUSCEPTIBILITY

An alternative way of calculating the suscepti-
bility, given a particular approximation for the
propagator, is by the conserving approximations
of Baym and Kadanoff.!® These approximations are
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such that for a given approximation to the propa-
gator they generate space- and time-dependent re-
sponse functions, of which the susceptibility is one,
which obey local conservation laws for the number,
charge current, spin current, and energy densities.
They are derived in a physically attractive way:

A given approximation to the dynamics of the par-
ticles, i.e., the mass operator, is formally cal-
culated in the presence of an external field, and the
equations for the linear response functions appro-
priate for this approximation are obtained by taking
the first derivative of the propagator with respect
to the field and then setting the field equal to zero.
In this way, the conserving approximation gives the
actual linear response of the approximation to the
single-particle dynamics. !® In this section we

will derive the conserving approximations to the
susceptibility for both the Suhl vertex function and
the parquet vertex, and investigate the effect on the
susceptibility in the zero-width approximation to
the self-consistent vertex functions.

A. Suhl Vertex

Following the prescription of Baym and Kadan-
off, ' the diagrammatic equation for the conserving
vertex function for the Suhl self-consistent vertex
is shown in Fig. 5. We have set the frequency
transfer w equal to zero, as we are interested in
the static susceptibility; the only remaining fre-
quency is the electron frequency €. Using a spin
decomposition to pick out the triplet vertex, which
is all that contributes to the susceptibility, and
keeping only the triplet part of the self-consistent
vertex, we have

To(e)=-1- %Z/gz(i) {U+%7(E—e)
+ %ZJ gl e -e)ge+e’ -e)yle' -e) -3 1)

—gle+e-€)le' -)+3 U)]} r(e), (26)

where v, given by
v(@)=U/[1-$@),
7(w)=US@)/[1-5()),
S@=- 5Dz o),

is the self-consistent triplet vertex. Going to the
zero-width approximation,
y(w)= V(O)5w,o= Y8u,0 »

we have, for €,=~ 3U, so thatg is odd in €,

I(e)=-1 -% 2%(€) T,(e) -% FLCEICN

JORBORBONGS

PR OO

++

(b)

FIG. 5. (a) The Suhl self-consistent vertex equation.
() The equation for the vertex function in the conserving
approximation.

Y=y=U ) (27)

which is readily solved, giving the conserving
susceptibility

Xe=(gup? s/l -59], (28)
-1
S = —% ? g%(e) <1 +-;- ﬁ"7g2(6)> . (29)

Since g2<0 for €,= -3 U, $'>S(0). As the self-
consistency condition at T=01is S(0) =1, $’(T=0)
>1 and so for some T>0, S'=1, i.e., X, is diver-
gent at a nonzero temperature. This result is of
course nonphysical, and the conclusion which must
be drawn from it is that the Suhl vertex omits a
class of diagrams which are essential for the cor-
rect description of local-moment formation.

B. Parquet Vertex

With the parquet vertex we have tried to include
many of the paramagnon-exchange vertex diagrams.
In doing so we have also included the diagrams
which led to the divergence of the Suhl conserving
susceptibility. We may then hope that these are
the missing diagrams in the calculation of the con-
serving susceptibility.

It is extremely difficult to obtain a diagrammatic
representation of the conserving vertex function in
this case, as the parquet diagrams themselves are
quite complicated. Therefore, we have derived a
set of self-consistent equations in the zero-width
approximation to the parquet diagrams for an ap-
plied external magnetic field. The spin decomposi-
tions of Sec. IT are no longer valid, and we cannot
simplify these equations so they have the form of
simple Bethe-Salpeter equations. However, we
may linearize the equations with respect to the
spin- and field-dependent part of the propagator by
writing
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-1 ==l -1 1. 5 -1
gale)=g ) +adg™(e), - (80) x=-(gusl? = 2 g%e) lim X&) (31)
B¢ H-o &ksH
where to lowest order 6g ™' is first order in the ex- The derivation Ofl the equation for
ternal field H and g™ is zeroth order. The solution T,(¢)= lim 5g " (€)
of the linearized self-consistent vertex equations ¢ #-0 &KpH

is then inserted into the mass operator, which is
again linearized, and hence a linear equation for
6g ™! is obtained. The susceptibility is found from

|

is then merely a problem of complicated and tedious
algebraic manipulations which we shall not go
through here. Using [y,| > v, and U, we obtain

r©-1-% 252 (11 056 9) T+ g0 T g0 (252 - 2e)]

-1
><(1+-12- Y g0t §g2<z)v(z,<)) . (32

where ¥ and g are the solutions of the parquet equations, and

o6 )= (M- U+@le, )] 57, ) ET)

-A,(€)A €) {x'y,(e, € [(1 - ’—‘;+ 1_96 x“)g(e)rc(e)+x (1 + % x2> g(s')r‘c(e’ﬂ+x<2— —2— x"’)Z—%(e', e)}

<~ xz)" (-2 A Tl TR U+Qle, O1E'E) 5 €. )
X [1 +A,(€) A e)x? (-2— - 141 P 3—92-9:4)( - % xz)-l (1 - % x3>-1] ,

Though this is a linear equation for I', and can be
solved numerically by matrix inversion, the com-
putational work involved is not worth the effort.
A low-temperature approximation may be derived
which reveals the essential features of the conserv-
ing susceptibility.

|

x=(1/B)g(e)g(€)y(e,€'). (33)

I

This approximation is derived by noting that if
y o B2/% for large B, then xocB-1* and many of the
terms in Eqs. (32) and (33) will drop out. Assum-
ing that a frequency sum will give a contribution
of order g times the average magnitude of the sum-
mand, we obtain

ro-[i- £ g0 (- 5 T s’ 9)re)

2 -1
X [1+ 2—(; g() % .7; g¥€) v, €) (1— % 7;3 gie")y (e, E))] ,

Comparing this with the equation for 7, at low tem-
peratures, we see that the leading term in @} ,

Lg)g@ /8F v, €,
has been replaced by

1 (g g@)rE, ) U ’ ' =
‘5( 8 ) g & &ENE D)

x=g()g€)v(e, €)/B. (34)

lin Eq. (34). We expect this term to be of the same
order of magnitude as the leading term in @}, i.e.,
essentially temperature independent at low 7', but
whether the sum

U ? 7 =
T § g2 v, ®
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FIG. 6. The conserving approximation susceptibility

as a function of B for various values of U. The results
for U=U, agree exactly with the self-consistent suscep-
tibility at low temperatures, and x, for U=10U, diverges
for p<1.

is larger or smaller than I y(e, €) is not obvious.
If it is smaller, the effective interaction in Eq. (34)
will be stronger than that in Eq. (16b) and we ex-
pect the conserving susceptibility to diverge, while
if it is larger, the effective interaction will be
weaker, and thus the conserving susceptibility
should in fact be finite at 7'=0. Indeed, it is not
at all clear what conditions on y must be satisfied
for Eq. (34) to yield a susceptibility that diverges
exactly at T=0, i.e., proportional to 7-% at low
temperatures.

The numerical solution of Eq. (34), shown in
Fig. 6, provides the answer to these questions for
U,=U=10U,: The effective interaction is stronger
and the conserving susceptibility diverges at finite
T. This conclusion has been verified by the solu-
tion of the full equations for I',, Eqs. (32) and (33),
in the region of the divergence. Hence, the par-
quet-diagram approximation, at least when coupled
with the zero-width assumption for the paramagnon
mode, does not yield a physically consistent pic-
ture of the mechanism of local-moment formation.

IV. DISCUSSION

There are two ways of understanding the failure
of the preceding parquet-diagram calculations to
give a tenable theory of local-moment formation:
Either important classes of diagrams have been
left out, or the zero-width assumption for the para-
magnon mode is unrealistic. If the first case is
true, it seems unlikely that any diagrammatic
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theory of local-moment formation will work, i.e.,
the coupling between paramagnon modes in the

‘parquet-diagram scheme must be included, and so

higher-order approximations in the totally irreduc-
ible vertex are the only extension of the theory
available. As this will be an essentially pertur-
bative expansion, it does not seem likely that any-
thing other than the full series for I will be suffi-
cient,

If it is the case that the zero-width assumption
is at the root of the problems with the previous
calculations, we may speculate as to the effects to
allowing the paramagnon mode to have a finite
width, as in Levine and Suhl* and Hamann,® We
expect 7% to have narrow modes at w=0 and at
€=¢’, corresponding to the 8, and & . terms in
the zero-width approximation. However, the €=¢ !
mode should be broader and weaker than the w=0
mode since it will arise from sums over overlap-
ping w=0 modes in the inhomogeneous term in Eq.
(1a). This is seen explicitly in Egs. (13) and (15),
where the self-consistent G¥’s are proportional to
(G‘)z. Since the @!’s in the equations for ¥, and
v; arise from these €=€ ! singularities, this means
that the reduction of the triplet effective interaction

. will be comparatively weaker than it has been in

the zero-width approximation. However, the re-
duction of the triplet effective interaction would
still have significant effects. Since paramagnon
exchange in the vertex function tends to weaken
the enhancement of the self-consistent vertex, we
suspect that the characteristic temperature at
which this vertex saturates®® will get larger.
This may then remove the problem associated with
the U dependence of the Kondo temperature in the
Suhl vertex calculations, which Hamann® points
out goes as

T, g~ (U/Ta)2
instead of the e~%/™ expected from the Schrieffer-
Wolff transformation. !’

If this speculation is indeed correct, a finite-
width parquet calculation would result in transport
properties (e.g., the resistivity p) and thermody-
namic properties (e.g., c,) with reasonable tem-
perature dependence for local-moment and Kondo-
system effects. A problem would still remain with
the susceptibility, however. The self-consistent
x should be weaker than that of the Suhl vertex cal-
culations which, as Hamann® has shown, has much
too small a Curie constant. A proper calculation
of x would be the conserving approximation, which
does too good a job of enhancing the susceptibility
in the zero-width approximation. However, in the
finite~-width calculation we would not be seeking a
divergence at exactly T=0; we would expect an
enhanced, but finite, self-consistent vertex at
T=0, and there is room, at least, to get a still
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further enhanced, but finite, conserving suscepti-
bility at T'=0.

Without doing the calculation, all we may do is
speculate what the results will be. However, our
experience with the zero-width calculation indicates
that the computational problem involved is stupen-
dous. Some approximation, such as a Lorentzian
shape to the low-frequency modes, 45 will be es-
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sential before such a calculation can be contem-
plated.
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The Kadanoff theory of scaling near the critical point for an Ising ferromagnet is cast in
differential form. The resulting differential equations are an example of the differential
equations of the renormalization group. It is shown that the Widom-Kadanoff scaling laws
arise naturally from these differential equations if the coefficients in the equations are ana-
lytic at the critical point. A generalization of the Kadanoff scaling picture involving an “ir-
relevant” variable is considered; in this case the scaling laws result from the renormaliza-
tion-group equations only if the solution of the equations goes asymptotically to a fixed point.

The problem of critical behavior in ferromagnets
(and other systems) has long been a puzzle.! Con-
sider the Ising model of a ferromagnet; the parti-
tion function is

Z(K,h)=2J exp (KEESﬂ s;,;+h233) s 1)
{s} i 2

where K=-J/kT, J isa coupling constant, sz is the
spin at lattice site 1, 3); is a sum over nearest-
neighbor sites, and % is a magnetic field variable.
The spin s3 is restricted to be +1; ) () means a
sum over all possible configurations of the spins.

T is the temperature, and % is Boltzmann’s con-
stant. The partition function is a sum of exponen-
tials each of which is analytic in K and 2. There-
fore one would expect the partition function itself
to be analytic in K and 4. In fact, however, the
partition function is singular for K=%, and 2 =0,
where K, is the critical value of K. To be precise,
the singularity occurs only in the infinite-volume
limit, in which case one calculates the free-energy
density

F(K,h):lim—:; nZ(K, ), @)
Vew



